Global Flows for Stochastic Differential Equations without Global Lipschitz Conditions
نویسندگان
چکیده
logR. We regularize the stochastic differential equations by associating with them approximating ordinary differential equations obtained by discretization of the increments of the Wiener process on small intervals. By showing that the flow associated with a regularized equation converges uniformly to the solution of the stochastic differential equation, we simultaneously establish the existence of a global flow for the stochastic equation under local Lipschitz conditions.
منابع مشابه
Numerical Solutions of Stochastic Differential Equations with Piecewise Continuous Arguments under Khasminskii-Type Conditions
The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments SEPCAs . The classical Khasminskiitype theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations SDEs without the linear growth condition by the use of the Lyapunov functions. However,...
متن کاملConvergence of the Euler Scheme for a Class of Stochastic Differential Equation
Abstract: Stochastic differential equations provide a useful means of introducing stochasticity into models across a broad range of systems from chemistry to population biology. However, in many applications the resulting equations have so far proved intractable to direct analytical solution. Numerical approximations, such as the Euler scheme, are therefore a vital tool in exploring model behav...
متن کاملStrong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations
Traditional finite-time convergence theory for numerical methods applied to stochastic differential equations (SDEs) requires a global Lipschitz assumption on the drift and diffusion coefficients. In practice, many important SDE models satisfy only a local Lipschitz property and, since Brownian paths can make arbitrarily large excursions, the global Lipschitz-based theory is not directly releva...
متن کاملAlmost sure exponential stability of backward Euler-Maruyama discretizations for hybrid stochastic differential equations
This is a continuation of the first author’s earlier paper [17] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler–Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [17] is the global Lipschitz condition. However, we will show in this paper that without this gl...
متن کاملOn delay-dependent stability for a class of nonlinear stochastic delay-differential equations
Global asymptotic stability conditions for discrete nonlinear scalar stochastic systems with state delay are obtained based on the convergence theorem for semimartingale inequalities, without assuming the Lipschitz conditions for nonlinear drift functions. The Lyapunov-Krasovskii and degenerate functionals techniques are used. The derived stability conditions are directly expressed in terms of ...
متن کامل