Global Flows for Stochastic Differential Equations without Global Lipschitz Conditions

نویسندگان

  • Tusheng Zhang
  • T. ZHANG
چکیده

logR. We regularize the stochastic differential equations by associating with them approximating ordinary differential equations obtained by discretization of the increments of the Wiener process on small intervals. By showing that the flow associated with a regularized equation converges uniformly to the solution of the stochastic differential equation, we simultaneously establish the existence of a global flow for the stochastic equation under local Lipschitz conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solutions of Stochastic Differential Equations with Piecewise Continuous Arguments under Khasminskii-Type Conditions

The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments SEPCAs . The classical Khasminskiitype theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations SDEs without the linear growth condition by the use of the Lyapunov functions. However,...

متن کامل

Convergence of the Euler Scheme for a Class of Stochastic Differential Equation

Abstract: Stochastic differential equations provide a useful means of introducing stochasticity into models across a broad range of systems from chemistry to population biology. However, in many applications the resulting equations have so far proved intractable to direct analytical solution. Numerical approximations, such as the Euler scheme, are therefore a vital tool in exploring model behav...

متن کامل

Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations

Traditional finite-time convergence theory for numerical methods applied to stochastic differential equations (SDEs) requires a global Lipschitz assumption on the drift and diffusion coefficients. In practice, many important SDE models satisfy only a local Lipschitz property and, since Brownian paths can make arbitrarily large excursions, the global Lipschitz-based theory is not directly releva...

متن کامل

Almost sure exponential stability of backward Euler-Maruyama discretizations for hybrid stochastic differential equations

This is a continuation of the first author’s earlier paper [17] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler–Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [17] is the global Lipschitz condition. However, we will show in this paper that without this gl...

متن کامل

On delay-dependent stability for a class of nonlinear stochastic delay-differential equations

Global asymptotic stability conditions for discrete nonlinear scalar stochastic systems with state delay are obtained based on the convergence theorem for semimartingale inequalities, without assuming the Lipschitz conditions for nonlinear drift functions. The Lyapunov-Krasovskii and degenerate functionals techniques are used. The derived stability conditions are directly expressed in terms of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999